
TECHNICAL ARTICLE
TRACE32 Multi-Mode MC/DC Coverage

@lauterbach.com | 1

 MODIFIED CONDITION /
 DECISION COVERAGE

Andrea Martin | 30-July-2023

MC/DC coverage is recommended in most safety standards
for adequate testing of software with a high safety
level. Lauterbach first introduced its solution for MC/DC
coverage in 2018. In our initial solution, we focused on
MC/DC coverage solely based on program flow tracing.
The goal was to support the widest possible range of
core architectures and trace protocols. However, practical
experience has shown that we need to extend this approach
with some instrumentation to achieve completeness.
Lauterbach calls the extended solution TRACE32 Multi-
Mode MC/DC Coverage. Multi-mode coverage includes
three types of instrumentation: no instrumentation, targeted
instrumentation, and full instrumentation only as a fallback.
For instrumentation, the goal was to ensure minimal memory
footprint and almost no runtime overhead.

The purpose of this paper is to introduce TRACE32 Multi-
Mode MC/DC Coverage. The basis is still the program
flow trace. So, we begin with a brief introduction to this
technology and summarize the challenges that have
motivated our extension.

MC/DC Coverage via Program Flow Trace
The basis for MC/DC coverage analysis is the program flow
trace recording (see figure 1). A parallel or serial off-chip
trace port is certainly best for recording a suitably large
amount of trace for analysis. But also, a large onchip trace
memory or a trace recording done in a TRACE32 Instruction
Set Simulator offer a good basis. For a complete MC/DC
coverage analysis via the program flow trace, four criteria
must be met:

Criteria #1: TRACE32 has to know the structure and the
position of the decisions within the source code. Since the
decision details are not included in the debug information
generated by the compiler, Lauterbach offers its own Clang-
based command line tool named t32cast for this purpose.
t32cast analyzes the C/C++ sources and generates an
extended code analysis (.eca) file for each source file, that
provides the decision details.

Criteria #2: Each decision is composed of one or more
(atomic) conditions. And each condition in the source
code must be represented by a conditional branch or by a
conditional instruction at object code level.

Criteria #3: An exact mapping of the decisions in the source
code to the conditional branches/instructions in the object
code is required.Figure 1: Listing of recorded program flow trace.

NO INSTRUMENTATION
TARGETED INSTRUMENTATION

FULL INSTRUMENTATION

TECHNICAL ARTICLE

Criteria #4: It must be observable by the conditional
branches/instructions in the recorded program flow trace
whether a source code condition was evaluated true or false.

So far, the basic concept. The screenshot in figure 2
illustrates what has been described so far.

Observability Gaps and Their Causes
Practice has shown that criteria #2, #3 and #4 are not
always fulfilled in every test scenario. When this is the case,
Lauterbach speaks of observability gaps. Observability gap
means that TRACE32 cannot detect whether a condition
has been evaluated as true or false at a certain point in the
program flow trace. In this case, no MC/DC coverage result
can be displayed for the related decision. Here are the most
likely causes of observability gaps and the countermeasures
that need to be taken:

1. No dedicated compiler support

First of all, you should consider writing code coverage
friendly code. Nested decisions or simple decisions in the
assignment context, such as return a==b, may cause
observability gaps. Here it is not guaranteed for every
compiler that all (atomic) conditions are represented by a
conditional branch/instruction on the object code level.
This can be easily avoided by following some simple coding
guidelines summarized by Lauterbach. However, if one
cannot or will not modify the source code of a colleague
or external provider, gaps are unavoidable. Criterion #2
is violated, but the observability gaps can be closed by
targeted instrumentation. The second part of this article will
provide details on this instrumentation mode.

On the other hand, the large number of core architectures
and the associated diversity of compilers represents
a challenge. An impressive number of cores offer the
possibility to generate program flow trace. And there are
a big number of compilers, especially for commonly used
core architectures. The result is a large amount of possible
core architecture/compiler pairings. There is no generic

07/2023 | 2

heuristic for mapping source code decisions to conditional
branches/instructions at object code level that generates an
exact result for every possible pairing. In practice, TRACE32
has to tailor the mapping to the core architecture/compiler
combination. Much, especially for common core/compiler
combinations is already tailored.

For not yet supported core architecture/compiler pairings,
for which the generic heuristic of TRACE32 does not provide
an exact result, criterion #3 is not to be met. Lauterbach
offers targeted instrumentation or even full instrumentation
as a fallback for these cases.

2. Macros

A macro that is used in a decision can in itself contain
decisions. The compiler expands all macros before
compilation and handles the expanded statement as a single
source block. During this step the source code locations of
the decisions inside the macro are lost. In this case, criterion
#3 is violated. A mapping of the inside-macro-decisions to
the conditional branches/instructions is no longer possible.
The resulting observability gap can be closed by targeted
instrumentation.

Figure 2: Source code decision and its mapping to conditional branches.

GLOSSARY

•	 A CONDITION (grey in the picture above) is a logical
indivisible, atomic expression. It can only be "true"
or "false".

•	 A DECISION (framed by turquoise rectangle) is a logical
expression which can be composed of several (atomic)
conditions separated by logical operators such as "or",
"and", "not". It results in true or false.

TECHNICAL ARTICLE 07/2023 | 3

Summarizing what has been described so far: a bit of source
code instrumentation might be required to verify MC/DC by
trace-based code coverage.

Workflow for Multi-Mode MC/DC Coverage
Since full instrumentation is only required in corner cases,
we will concentrate on the two standard TRACE32 MC/DC
coverage modes in the following.

• Trace-based code coverage without instrumentation

•	 Trace-based code coverage with targeted
instrumentation

Figure 3 provides an overview of the workflow, which is
organized into the two steps "Build Process" and "Test &
Report".

Build Process
Figure 4 on the next page gives a detailed overview of the
build process. The tasks of the build process are as follows:

1.  Create a classic ELF file for the “Test & Report” step.

2.  Create the .eca files that provide TRACE32 with the
necessary decision details (as required by criterion #1).

3.  Create an instrumented ELF file for the “Test & Report”
step, in case that observability gaps have been detected.

All outputs of the build process required for the “Test &
Report” step are drawn in turquoise and marked with a
downward arrow in Figure 4. To generate the necessary
outputs, the following TRACE32 products must be integrated
into the build process.

•	 Clang-based command line tool t32cast; t32cast for
C/C++ is free of charge and compiler independent.

•	 TRACE32 Instruction Set Simulator for the core architecture
under test; the use of the TRACE32 Instruction Set
Simulator requires a paid floating license.

3. Highly-optimized code

Highly-optimized code is not recommended for trace-based
code coverage analysis. For one, individual conditions may
not be represented by conditional branches/instructions at
the object code level. Criterion #2 is violated here. However,
this can be remedied easily by targeted instrumentation.
Highly optimized code is particularly challenging because
it may not possible to map the decisions exactly to the
conditional branches/instructions. The violation of criterion
#3 cannot be resolved in all cases.

Moderate optimization is recommended here. This is also
advantageous because TRACE32 can display the results of
the MC/DC coverage analysis clearly and in an intuitively
and readable way.

4. Limitations of the trace protocol

The instruction set for a core architecture may contain
conditional instructions. The compiler uses these to
implement source code conditions at object code level.
For trace-based code coverage to work, the trace protocol
used must generate details about the execution of these
conditional instructions. Unfortunately, this is not always the
case. Currently there is no option that advises the compiler
not to use conditional instruction. Observability gaps in
program tracing are therefore inevitable. Criterion #4 is
violated, but targeted instrumentation can be used to close
the gaps.

5. Instruction set complexity

The challenges described in 1-4 are essentially the ones faced
by cores with general-purpose RISC architecture. However,
complex SoCs also contain coprocessors and special-
purpose cores for which an instruction trace is generated.
Examples are DSPs, configurable cores with user-defined
instructions, timer IP and many more. Here, TRACE32 must
always be specially adapted to the instruction set for an
MC/DC coverage analysis. In this respect, it is always
advisable to check with Lauterbach in good time.

Figure 3: Two step workflow for TRACE32 multi-mode MC/DC coverage.

Test & ReportBuild

Build Process Including
Observability Gap Detection Gaps?

Trace-Based Code Coverage
Without Instrumentation

Trace-Based Code Coverage
with Targeted Instrumentation

Code Coverage
Report in
Various Formats

NO

YES

Source
Files

C/C++

TECHNICAL ARTICLE 07/2023 | 4

What additional tasks do the two TRACE32 products
handle in the build process?

1.	 t32cast analyzes the C/C++ source code. As a result
of this static code analysis, an .eca file is generated
for each source code file, which contains the required
information about the decision structure.

2.	The ELF file and the .eca files must be loaded into
the TRACE32 Instruction Set Simulator to check for
observability gaps. The result is saved in a JSON file.

3.	 If the JSON file is empty, the build process is complete.

4.	 If the JSON file is not empty, the source code must be
instrumented at the locations where the observability
gaps were detected. This is another task done with
t32cast. The build process is completed here with the
creation of an ELF file for the instrumented sources.

Figure 4: The build process for TRACE32 multi-mode code coverage.

Before we proceed to the "Test & Report" step, a few
words about the instrumentation performed by t32cast.

To ensure that TRACE32 can detect whether a condition
evaluates true or false at any point in the recorded
program flow, the source code is instrumented with the
two instrumentation hooks t32__alpha() and t32__beta()
for the detected observability gaps (see figure 6 on the
last page). Both hooks are just function calls with an
empty function body. TRACE32 evaluates these calls
for MC/DC coverage analysis in addition to conditional
branches/instructions.

The cost per instrumentation is very low because no
additional interface to memory is required for TRACE32
targeted instrumentation. It is also convenient that no
additional source code lines are generated, so the original
source code can be used in the "Test & Report" step.

Build Process

Build Build

JSON
List of Detected
Observability

Gaps

Detect
Observability Gaps

Simulator

Instrumented
Source Files

C/C++

Targeted Instrumentation

Static Code Analysis

t32cast

Source
Files

 C/C++

ELF
Executable

ELF
Instrumented
Executable

.eca

Extended
Code Analysis

Data

TECHNICAL ARTICLE

Test & Report
For the test, the C/C++ sources, the corresponding .eca
data and the corresponding ELF file must be loaded into
the TRACE32 Debugger/Instruction Set Simulator, which
executes the MC/DC coverage analysis (see figure 5). There
are two options for trace recording:

1.	 The trace recording and the execution of the MC/DC
coverage analysis are performed as a sequential task.
The MC/DC coverage analysis is executed directly for
the trace data recorded in the debugger.

2.	Trace recording and the execution of the MC/DC coverage
analysis are separate tasks, performed by two different
test teams. In this case, the trace data must be saved in
a file after recording and reloaded into TRACE32 for the
MC/DC coverage analysis at a later point in time.

Recommended Workflow for Safety-Related
Projects
As described above, trace-based MC/DC requires
reduced optimization and may even require some code
instrumentation. It is crucial that the embedded software
built specifically for the coverage test purpose behaves in
exactly the same way as the production software that will
ultimately control the embedded system. Therefore, it is
necessary to test both software variants side by side for
the entire test life cycle. Figure 7 on the last page shows
the testing workflow recommended for safety related
projects.

Figure 5: Test & Report for TRACE32 Multi-Mode Code Coverage.

Test & Report

ELF
Instrumented
Executable

ELF
Executable

Source
Files

C/C++ .eca

Extended
Code Analysis

Data

•	 Display Result

•	 Generate Report

Execute MC/DC Coverage Analysis

1.	 Prepare Instruction Trace Recording
2.	 Run Program
3.	 Save Trace Recording to File

(optional)

Trace Recording

Code Coverage Report
in Various Formats

or

07/2023 | 5

TECHNICAL ARTICLE

Figure 7: Testing workflow for safety-related projects.

Figure 6:	 Instrumentation example for the multi-mode code coverage.

Outlook
TRACE32 Multi-Mode Code Coverage allows us to achieve our goal of supporting MC/DC coverage for a wide range of core
architectures, trace protocols and compilers. In many cases, you will get by without instrumentation at all. The targeted
instrumentation that may be necessary requires never more than 10% additional memory for the whole object code and has
a minimal time overhead.

07/2023 | 6

...

if (mcount < 500)

...

...

if (((mcount < 500) ? (t32__alpha(), 1) : (t32__beta(), 0)))

...

Targeted Instrumentation

t32cast

my_source.c

my_source.c.instr

JSON
List of Detected
Observability

Gaps

Testing Workflow

Code Coverage Report

 =

Production Code Test Result A

Not-Optimized Code /
Instrumented Code

Test Result A'

Test Case A

Test Case A

