
Lauterbach GmbH Altlaufstr. 40 D-85635 Höhenkirchen-Sieg. +49 8102 9876-0 marketing@lauterbach.com www.lauterbach.com

Introduction

System run-time analysis is an essential part of the
development process of real-time applications. This
can be achieved using a hardware trace. A hardware
trace tool can collect, via a dedicated off-chip trace
port, at run-time, the trace information produced by
the trace generation logics of the individual cores. The
collected data is then stored into the memory of the
trace tool. The TRACE32 PowerTrace Serial tool offers
e.g. a trace memory up to 4 GByte for this purpose.

Modern processors, however, generate a considerable
amount of trace data in a short period of time. During
a test on a TriCore™ AURIX™ processor where two
cores were traced, the 4 GByte of trace memory filled
within 27 seconds. System runtime analysis often
requires longer trace periods than this. For such use
cases, TRACE32 offers the possibility of streaming the
trace data during recording time to a file on the host
computer. In this way, it is possible to capture trace
recordings of minutes or even hours. The only limitation
is the available storage on the host computer. When
using this trace mode, the memory of the hardware
trace tool acts as a large FIFO which intercepts peak
loads. The same technique is also used for TRACE32
Live Code Coverage where the trace data is also
processed at run-time.

Nevertheless, two main conditions must be fulfilled
so that the trace data can be streamed to the host
computer without any errors or losses:

1.	 A 64-bit host computer is required in order to handle
the large trace record numbers.

2.	 The average data rate at the trace port should not
exceed the maximum transmission rate of the host
interface in use. In order to minimize the amount of
streamed data, various mechanisms to filter and
compress the trace information before streaming
are implemented in the TRACE32 hardware. The
compression factor depends on the trace protocol
and the generated trace data.

Achieving an optimal trace streaming rate depends on many factors.
This article presents some of them based on a real support case.
Khaled Jmal, Support Manager

TRACE32 streaming at optimal rates

TRACE32 debug and PowerTrace Serial trace tool
for TriCore™ AGBT

File
on SSD

RECORDING

O
ff

-c
h

ip
 T

ra
c

e
P

o
rt

+ STREAMING

Power Trace Serial

Lauterbach GmbH Altlaufstr. 40 D-85635 Höhenkirchen-Sieg. +49 8102 9876-0 marketing@lauterbach.com www.lauterbach.com

page 2 of 2

While the first condition is nowadays generally met, our
experience showed that the second one is not always
guaranteed even when using a modern host computer.
Different bottlenecks can actually exist between the
trace tool and the host causing an overflow of the trace
tool memory.

Maximum transmission rate

In our previously mentioned test with the TriCore™
AURIX™ processor, the trace memory overflowed after
47 seconds, resulting in a total trace recording time of
less than a minute when the streaming mode was used.

To diagnose the reason for such a problem, it is
necessary to first evaluate the average amount of
generated trace data per second. This can easily be
done using the TRACE32 trace mode LEASH which
stops the program execution as soon as the trace
memory is nearly full. The average of generated trace
data per second can then be calculated by dividing the
total amount of collected data by the program run-time.
The result depends heavily on the target application,
the core clock and the user selected trace settings. Our
test generated around 100 MByte/s.

The TRACE32 IFCONFIG.TEST /Warp 16. command
allows to measure the performance of the trace upload
from the debug and trace tool to the host computer.
We performed different measurements using a
PowerDebug PRO, the high-end TRACE32 debug
hardware, and different connections to Windows PC.
The results are displayed in the table below.

We can conclude from these results that, in our case, only
a USB 3.0 connection to the host would be fast enough
to transmit the generated trace data. However, even
when USB 3.0 is used, different problems could cause
a degradation of the transmission speed resulting in an
overflow of the trace memory. To find the bottleneck,

we need to verify the whole chain from the TRACE32
debug and trace tool to the hard drive.
A bad quality USB cable or a defective USB 3.0 port
on the host computer could cause a fall-back of the
connection to USB 2.0. The first thing to check is that
a USB 3.0 connection is really present. This can be
easily done in TRACE32 PowerView GUI by selecting
the menu Help > About TRACE32. If you see under
“Hardware” something like “PowerDebug PRO via
USB 3.0” then everything is fine. Otherwise, you need
to check the used USB cable and USB port.

The bottleneck could also be caused by a problematic
USB 3.0 controller or a combination of the USB driver
and the selected hardware. It is always worth trying
an update of the USB driver software. You should
also check if there are existing problem reports
related to the host computers USB controller and the
host operating system. This has already been seen
in customer support cases; not all USB 3.0 chipsets
are equal.

The next thing to check is the disk write speed. In fact,
the bottleneck could be due to a slow write access to
the disc because of a slow hard drive or often simply
caused by an active anti-virus. It is recommended to
use a Solid-State-Drive (SSD), preferably connected
via PCI Express, instead of using a Hard Disk Drive
(HDD). A simple test showed that writing a 12 GB file
on a system with 8 GB RAM took 84 seconds with
an HDD (~144 MBps) and 54 seconds with an SSD
(~224 MByte/s).

Where multiple drives are connected to the PC, you
should ensure that the streaming file is written to
the faster drive. The path of the streaming file can
be set in TRAC32 PowerView using the command
Trace.STREAMFILE <filename>.

The support case in our test with the TriCore™ AGBT
trace was caused by a defective USB 3.0 port which
operated in USB 2.0 mode. By using a different port,
TRACE32 streaming worked without overflowing the
memory of the PowerTrace Serial module.

Conclusion

The streaming mode made it possible to perform
comprehensive runtime measurements and to optimize
the application under test in a timely manner.

	 Connection	 Upload rate

USB 2.0   40 MByte/s

USB 3.0 204 MByte/s

GBit Ethernet   90 MByte/s

