
Knowledgebase > FAQs by core architecture > Arm > [Arm] Target resets and boots correctly after pushing the
reset button / after a power-on reset, but not after a SYStem.Up+Go

[Arm] Target resets and boots correctly after
pushing the reset button / after a power-on reset,
but not after a SYStem.Up+Go
2024-12-11 - Comments (2) - Arm

The debugger uses the JTAG RESET pin (nSRST) which is connected to the debug connector (pin15 at the 20-pin
debug connector, pin 10 on the 10-pin MIPI connector). The SYStem.Up command resets the target via the
reset line only if SYStem.Option.EnReset is set to ON. Please check if this option is enabled in the SYStem
window (menu CPU > System Settings...):

Please also check if the reset line of the debugger is properly connected to the chip reset (like the reset button).

It may be also possible that the reset line, that is pulled low during SYStem.Up per default, does not reset the
entire SoC. A SYStem.Up cannot in this case reset the device completely. The processor will then not start from
a reset context with the device, which might cause the boot issues. The reset button and the nSRST pin might
also be connected to different points on the board, so check the board schematics. Sometimes, there is a reset
logic in between that treats the reset button and the nSRST differently. So also explore the option to disconnect
the nSRST and reroute it to the reset button with a wire, to achieve the same reset the reset button does.

Check for custom reset register
Please also check if a SoC specific reset mechanism via a register interface is available (i.e., a core reset be
triggered by writing to the proper register). If yes, then this might be used together with the command
SYStem.Option.RESetRegister.

Develop custom reset script
If the reset cannot be done by a single register, e.g. if multiple custom registers are written, the reset sequence
should be put in a PRACTICE script. For example, the script could access the reset register via the AHB/AXI in
SYStem.Mode Prepare. Then, having done the reset, the debugger could connect with SYStem.Mode Attach.
 Attach does not ensure the CPU is at the reset vector, so to keep the CPU at the reset vector, try to put an
endless loop at the reset vector before releasing the CPU from reset again. This can also be done in "Prepare"
mode, if the CPU memory is accessible via AHB/AXI. In this case use the Data.Assemble command as shown in
the template script below:

// This example outlines a rough scheme how a CPU could be reset via a custom
// register sequence and held at the reset location if the CPU starts from a
// writeable RAM location, e.g. SRAM

SYStem.CPU < cpu >
SYStem.Mode.Prepare

https://support.lauterbach.com/
https://support.lauterbach.com/kb
https://support.lauterbach.com/kb/faqs-by-core-architecture
https://support.lauterbach.com/kb/arm
https://support.lauterbach.com/kb/articles/arm-target-resets-and-boots-correctly-after-pushing-the-reset-button-after-a-power-on-reset-bu
https://support.lauterbach.com/kb/articles/arm-target-resets-and-boots-correctly-after-pushing-the-reset-button-after-a-power-on-reset-bu
https://support.lauterbach.com/kb/arm

Data.Set [EAHB | EAXI]:<register1> % < value > // Bring core(s) into reset
Data.Set ... // Additional settings, e.g. start
address after reset

Data.Assemble [EAHB | EAXI]:< start_addr > b $-0x0 // Assemble endless loop

Data.Set [EAHB | EAXI]:< register_n > % < value > // Release cores(s) from reset
Data.Set ...

CORE.ASSIGN 1. 2. 3. ... // Assign as many cores as released
SYStem.Mode Attach // Attach to running cores
Break.direct

Moreover, the following template script allows to catch the CPU at the reset vector (Armv8 only):

// This example outlines a rough scheme how a CPU could be reset via a custom
// register sequence and caught at the reset vector with a reset catch mechanism.
// This might be useful if the core starts from a location that cannot be
// modified, e.g. ROM, so that an endless loop _cannot_ be assembled

SYStem.CPU < cpu >
CORE.ASSIGN 1. 2. 3. ... // Assign as many cores as released
SYStem.Mode Prepare

Data.Set [EAHB | EAXI]:< register1 > % < value > // Bring core(s) into reset
Data.Set ... // Additional settings, e.g. start
address after reset

 // Enable reset catch, in this example for Armv8. '/CORE' is not needed for single core setups
 Data.Set e:(COREBASE()+0x24) %Long 0x2 /CORE 1
Data.Set e:(COREBASE()+0x24) %Long 0x2 /CORE 2
...
Data.Set e:(COREBASE()+0x24) %Long 0x2 /CORE n

Data.Set [EAHB | EAXI]:<register_n> % <value> // Release cores(s) from reset
Data.Set ...

SYStem.Mode.Attach // Attach to stopped cores

Comments (2)

Comments (2)
YA Yasmin Amer
9 months ago
I have a question related to the reset topic, I am trying to reset through the sw (the sw directly access the reset
register to perform the reset) but then the reset has happened and the sw rerun again without clicking start
from the debugger (it is not the expected behavior), is this an issue related to a missing debugger configuration?
Oussema Koubaa
9 months ago

Hello, To ensure a proper support, please open a new ticket: "https://support.lauterbach.com/new-ticket" provide
more details about the issue (target, scripts used, etc.), include relevant screenshots, and generate a system
information report about your TRACE32 configuration by selecting the TRACE32 menu 'Help' > 'Support' >
'System Information...', click 'Save to File' and send the resulting text file as an attachment to your e-mail.

https://support.lauterbach.com/new-ticket

