
Knowledgebase > FAQs by core architecture > TriCore > [TriCore] Debugging Safety-
Critical Applications

[TriCore] Debugging Safety-Critical Applications
2024-09-18 - Comments (0) - TriCore

When debugging with SMU enabled, unwanted security/safety alerts may be reported. To
understand the cause of a reported alarm, please consult the Infineon documentation for
your chip. Nevertheless, the most common issues are discussed below.

1. Bus Errors
If the SMU is set up strict, some debugger accesses might cause SMU Alarms (bus errors).
The reason is that the chip can not differentiate between illegal and debugger accesses.
The following situations are to be considered:

1.1. Bus Errors Due to Debugger Access to Non-Mapped Address
Range or Non-Initialized Peripheral Modules
The solution is to use the command MAP.DenyAccess <addressrange> to protect the
address ranges from debugger access.

1.2. Bus Errors Due to Debugger Access to Erased PFLASH
When the debugger tries to access an erased PFLASH range, a bus error is returned due to
the incorrect ECC of erased PFLASH.

In this situation, the user can also use the command MAP.DenyAccess <addressrange>
to protect the erased PFLASH address ranges from debugger access.

An alternative solution is to program the unused PFLASH ranges with a pattern. This results
in programming the correct ECCs for the unused PFLASH ranges.
Infineon recommends filling unused PFLASH with an invalid opcode. This will ensure that an
IOPC (Illegal Opcode) trap is generated if the target attempts to execute from PFLASH

sectors that are supposed to be empty. For example, AURIXTM TC3xx User's Manual suggests
filling the empty PFLASH regions with the pattern 0x36363636 (see
AURIXTC3XX_um_part1_v2.0.pdf, section 5.3.4.7 Invalid Opcode).

The following example shows how to achieve this on a TC36x device with a 4 MB PFLASH:

; 4 MB PFLASH - TC36x 64F
&PFLASH_RANGE="0xA0000000--0xA04FFFFF"
DO ~~/demo/tricore/flash/tc36x.cmm PREPAREONLY
FLASH.ReProgram ALL /Erase
Data.Set &PFLASH_RANGE %Long 0x36363636
Data.LOAD.auto <your_program_file>
FLASH.ReProgram off

https://support.lauterbach.com/
https://support.lauterbach.com/kb
https://support.lauterbach.com/kb/faqs-by-core-architecture
https://support.lauterbach.com/kb/tricore
https://support.lauterbach.com/kb/articles/debugging-safety-critical-applications
https://support.lauterbach.com/kb/articles/debugging-safety-critical-applications
https://support.lauterbach.com/kb/tricore


1.3. Debugger Write Access Attempts to Read-Only Memory
Bus error is also returned if the debugger attempts a write access to read-only memory.
This occurs, e.g., when the user attempts to set a program breakpoint on PFLASH without
specifying the breakpoint type. To preserve the onchip comparators, TRACE32 tries first to
set software breakpoints by attempting to patch the address of the program breakpoint by
a debug instruction. TRACE32 R.2019.09 or newer uses an improved FLASH address range
model to decide whether a program breakpoint is to be implemented as an onchip
breakpoint.
To prevent the debugger from trying to set software breakpoints on PFLASH consider the
following alternatives:

Use Break.CONFIG to configure the behavior of different breakpoint types as well
as their scope.
Use MAP.BOnchip <addressrange> to force the debugger to set onchip
breakpoints in the respective memory range.

Note
It is to be considered that List.auto window also reads before the displayed code range
for the correct functioning of the dis-assembler. This is often a problem at the reset vector
given that its address is set at the start of PFLASH (following a non mapped memory range)
or following an erased PFLASH range.

2. TriCore Watchdog Timer
By default, the TriCore watchdog timer is disabled when OCDS is enabled, i.e., when the
debugger is attached. Some safety tests (e.g. SafeTLib) report this as a failure.
The solution is to keep the TriCore watchdog timer enabled and link it to the suspend bus
for synchronous start/stop with the TriCore cores.
Set:

SYStem.Option.WDTSUS ON
SYStem.Option.PERSTOP ON

3. TRACE32 Cache Handling
Cache evaluation and cache inspection require that TRACE32 can read the cache tags and
contents. AURIX CPUs allow reading this by mapping the cache into the CPU address space
using the MTU. As soon as the cache is mapped by TRACE32, the CPU will clean the cache
content due to security reasons. This might be reported as a security/safety alarm.

Cache mapping can be disabled using the command SYStem.Option.MAPCACHE
OFF in case of unwanted security/safety alerts.
TRACE32 R.2020.09 or newer avoids safety alarms originating from mapping the
cache into memory by temporarily disabling these alarms.


