
Knowledgebase > Tracing > Function run-time analysis using instrumentation-based trace (LOGGER)

Function run-time analysis using instrumentation-
based trace (LOGGER)
2026-01-17 - Comments (0) - Tracing

Instrumentation-based trace can be used as an alternative solution for function run-time analysis when no
hardware-based trace is available.

The entry and exist of each function needs to be patched to include a call for the LOGGER functions, which write
the trace information to a reserved buffer on the target memory using a trace format provided by
LAUTERBACH.

Example

Add a fetch cycle at the function entry with the function name as second parameter:

 T32_LoggerData (T32_FETCH, MyFunc, 0 /* unused */);

Add a fetch cycle at the end of the function to mark the function exit, with NULL as second parameter:

 T32_LoggerData (T32_FETCH, NULL, 0 /* unused */);

Note

The function T32_TimerGet() needs to be populated with an architecture-specific timer to include timing
information.

Example for TriCore using STM timer:

unsigned long long T32_TimerGet()
{
 return STM0_TIM0.U;
}

Refer for more information about LOGGER to TRACE32 Logger Trace and Application Note for the LOGGER
Trace

https://support.lauterbach.com/
https://support.lauterbach.com/kb
https://support.lauterbach.com/kb/tracing-2
https://support.lauterbach.com/kb/articles/function-run-time-analysis-using-instrumentation-based-trace-logger
https://support.lauterbach.com/kb/tracing-2
https://support.lauterbach.com/kb/articles/trace32-logger-trace
https://repo.lauterbach.com/pdf/app_logger.pdf
https://repo.lauterbach.com/pdf/app_logger.pdf

