
Knowledgebase > PRACTICE > How can I read/write from/to memory in a PRACTICE script?

How can I read/write from/to memory in a PRACTICE script?
2023-03-03 - Comments (0) - PRACTICE

Writing Raw Memory
Writing memory locations (or writing to memory mapped registers) from PRACTICE scripts
works with the command

Data.Set < address > %< format > < value >

Note, that hexadecimal values should be written with prefix "0x", while decimal values must
end with a dot "."

Examples:

Data.Set D:0x1000 %Long 0x12345678
Data.Set D:0x3000 %Long 42.

Thereby, "format" specifies the width of the data to be written, where...

%Byte stands for 8-bit

%Word stands for 16-bit

%Long stands for 32-bit

%Quad stands for 64-bit

(There are also format specifiers for a width of 3,5,6,7 bytes)

Instead of using a fixed address, you can also use a label if you have loaded your ELF file
already. E.g.:

Data.Set _IntVec1 %Long 0x800000

Note, that for writing of high level variables (which have been declared in the C/C++ code
of your application), it is more convenient to use command Var.set. (See below)

Reading Raw Memory
Reading memory locations (or reading to memory mapped registers) from PRACTICE scripts

https://support.lauterbach.com/
https://support.lauterbach.com/kb
https://support.lauterbach.com/kb/practice
https://support.lauterbach.com/kb/articles/how-can-i-read-write-from-to-memory-in-a-practice-script
https://support.lauterbach.com/kb/practice

works with the PRACTICE function

Data.< value width >()

Where < value width > stands again for Byte, Word, Long, Quad (see above).

PRACTICE functions must be used within a PRACTICE command or have to be assigned to a
PRACTICE macro.

Examples:

ECHO DATA.Long(D:0x1000)

PRIVATE &myvalue
&myvalue=DATA.Word(D:0x4020)
ECHO "My value is " &myvalue

Data.Set D:0x1000 %Long DATA.Long(D:0x1000)|1

The third example shows a way to do a read-modify-write with the purpose to set the least
significant bit in the 32-bit value at address 0x1000.

Note, that for reading of high level variables (which have been declared in the C/C++ code
of your application), it is more convenient to use function Var.VALUE() (See below)

Writing Variables
Writing a variable of your application via a PRACTICE script (after loading the ELF) works
with the command

Var.set < variable name >=< value >

Examples:

Var.set myvar=0x100
Var.set flags=flags|0x10

The second example performs a read-modify-write with the purpose to set bit 8 of a
variable named "flags".

Note, that all commands staring with Var. are special in the way that they deal with "High
Level Language" expressions, which basically means "Like you would do it in C/C++". So
here it is not needed that decimal values are followed by a dot. See also chapter "Change

a Variable Value" in Training HLL Debugging.

Reading Variables
Reading a variable of your application via a PRACTICE script (after loading the ELF) works
with the function

Var.VALUE()

Examples:

ECHO Var.VALUE(myvar)
WAIT (Var.VALUE(flags)&0x10)==0x10

The second example stalls the execution of the script until in the variable named "flags" the
bit 8 is set.

Related documents:

Training for the PRACTICE script language
Training HLL Debugging
General Commands Reference Guide D (with details about command Data.Set)
General Commands Reference Guide V (with details about command Var.set)
General Function Reference (with details about functions Data.() and Var.VALUE())

https://www.lauterbach.com/pdf/training_hll.pdf
https://www.lauterbach.com/pdf/training_practice.pdf
https://www.lauterbach.com/pdf/training_hll.pdf
https://www.lauterbach.com/pdf/general_ref_d.pdf
https://www.lauterbach.com/pdf/general_ref_v.pdf
https://www.lauterbach.com/pdf/general_func.pdf

