
Knowledgebase > Tracing > How can I measure clock cycles per instruction (CPI) using
TRACE32?

How can I measure clock cycles per instruction (CPI) using
TRACE32?
2025-08-21 - Comments (0) - Tracing

There are mainly two methods to obtain CPI (clock cycles per instruction) or MIPS (Millions
of Instructions Per Second) in TRACE32.

BenchMark Counters
The first method is BMC (BenchMark Counters), which in the case of Arm processors
correspond to the PMU (Performance Monitoring Unit). BMC is supported by the TRACE32
BMC.* command group. The results are directly obtained from the core counters, which
makes BMC the recommended primary method for measuring CPI or MIPS.

In addition, BMC often provides counters for cache hits and misses, which may also be
useful in the context of CPI analysis. To check whether BMC is supported for your processor
architecture, refer to the Processor Architecture Manual for your target in main.pdf. Generic
BMC commands are documented in the General Commands Reference Guide B.

Example for Arm Cortex-A72

BMC.state
BMC.AutoInit ON
BMC.CLOCK 1000MHz
BMC.PMN0.EVENT INST_RETIRED
BMC.PMN0.RATIO X/TIME
BMC.Init
Go
WAIT 1.s
Break

Using Trace-Based Measurments
The second method is to use trace-based measurements to obtain CPI or MIPS values.
This approach is mainly useful for metrics not covered by BMC counters. CPI can be

https://support.lauterbach.com/
https://support.lauterbach.com/kb
https://support.lauterbach.com/kb/tracing-2
https://support.lauterbach.com/kb/articles/how-to-measure-clock-cycles-per-instruction-cpi-using-trace32
https://support.lauterbach.com/kb/articles/how-to-measure-clock-cycles-per-instruction-cpi-using-trace32
https://support.lauterbach.com/kb/tracing-2
https://repo.lauterbach.com/pdf/main.pdf
https://repo.lauterbach.com/pdf/general_ref_b.pdf


statistically analyzed from trace data using commands such as Trace.STATistic.CYcle,
which provides average clocks per instruction calculated from traced instructions and
cycles.

Trace.STATistic.CYcle

The MIPS.* commands can additionally be used to analyze the MIPS. The system can be
analyzed under different aspects: workload per task, workload per high-level language line,
workload per specified functional group etc. The following command displays for instance a
numerical analysis per function.

MIPS.STATistic.Func

Refer for more information about the MIPS.* command group to the General Commands
Reference Guide M.

https://repo.lauterbach.com/pdf/general_ref_m.pdf
https://repo.lauterbach.com/pdf/general_ref_m.pdf


Moreover, you can use the ISTATistic.* command group to obtain detailed information
for individual instructions when a program trace is available. However, it should be noted
that for “high-end” cores this method may not provide cycle-accurate results for every
single instruction.

Example:

ISTATistic.ADD
ISTATistic.ListFunc
List /ISTAT

Refer for more information about the ISTATistic.* command group to the General
Commands Reference Guide I.

Note
The trace results must not include errors, such as FIFOFULLs or FLOWERRORs, in order to
provide reliable results. Refer for more information to HARDERRORs, FIFOFULLs and
FLOWERRORs in the trace.

https://repo.lauterbach.com/pdf/general_ref_i.pdf
https://repo.lauterbach.com/pdf/general_ref_i.pdf
https://support.lauterbach.com/kb/articles/harderrors-fifofulls-and-flowerrors-in-the-trace
https://support.lauterbach.com/kb/articles/harderrors-fifofulls-and-flowerrors-in-the-trace

