
Knowledgebase > Announcements > Introducing wide number support and strict radix checks

Introducing wide number support and strict radix
checks
2026-01-20 - Comments (0) - Announcements

We are upgrading PowerView’s PRACTICE scripting language to support wide numbers, with the current limit of
64 bits being increased to 2080 bits.

At the same time, we are introducing strict radix checking for numerical constants. This means, that numerical
constants must have a radix identifier: 0x prefix for hexadecimal or a . postfix for decimal numbers.

These changes could influence the behavior of some scripts.

The changes will be activated by default starting with PowerView software version 2026.02, by changing the
SETUP.RADIX default setting from Hex (hereafter called "previous system") to WideStrict ("new system")

We strongly recommend checking your scripts in advance regarding compatibility with the new number system.
Using the command SETUP.RADIX Hex to keep backward compatibility beyond this time is possible, but not
recommended.

Wide Number Support
In the previous system, with default setting SETUP.RADIX Hex, all numbers are treated as signed 64-bit
values. In the new system, SETUP.RADIX WideStrict is used as default setting, PowerView accepts up to
2080-bit wide numbers. Future versions may support wider numbers as needed.

The introduction of wide numbers has some side effects that may affect script compatibility.

1. Comparing Hexadecimal Values with Negative Numbers
In the previous system, numbers are treated as signed numbers and thus if the most significant bit (63) is set,
the number is interpreted as negative number. Therefore, 0xFFFFFFFFFFFFFFFF equals -1. Unsigned 64-bit
values are thus not possible in PRACTICE.

In the wide number system introduced in R.2026.02, all numbers are signed, and the sign will not change on
arithmetic overflows. Comparisons of a positive number and a negative number will always return FALSE.

Example SETUP.RADIX Hex SETUP.RADIX
Wide*

PRINT 0xFFFFFFFFFFFFFFFF==-1. TRUE FALSE
PRINT 0xFFFFFFFFFFFFFFFE==-2. TRUE FALSE
... TRUE FALSE
PRINT 0x8000000000000001==-9223372036854775807. TRUE FALSE
PRINT 0x8000000000000000==-9223372036854775808. ERROR TRUE
PRINT -0x1==-1. TRUE TRUE

Note

We use the notation SETUP.RADIX Wide* here as a wildcard to represent all commands beginning with
SETUP.RADIX Wide, for example SETUP.RADIX WideHex or SETUP.RADIX WideDecimal.

Unsigned values may need to be converted to signed values in scripts. For 8-, 16- or 32-bit numbers conversion
Powerview functions already exist. A new Powerview function is now available for 64-bit numbers.

Width Correct hexadecimal to signed value conversion Notes

Byte PRINT CONVert.SignedByte(0xFF)==-1 required independent of
SETUP.RADIX

Word PRINT CONVert.SignedWord(0xFFFF)==-1 required independent of
SETUP.RADIX

https://support.lauterbach.com/
https://support.lauterbach.com/kb
https://support.lauterbach.com/kb/announcements
https://support.lauterbach.com/kb/articles/introducing-wide-number-support-and-strict-radix-checks
https://support.lauterbach.com/kb/announcements

Long PRINT CONVert.SignedLong(0xFFFFFFFF)==-1 required independent of
SETUP.RADIX

Quad PRINT CONVert.SignedQuad(0xFFFFFFFFFFFFFFFF)==-1
new requirement for
SETUP.RADIX Wide*;
introduced in rev. 155331

2. Shifting Left
In the previous system, the maximum shift value is limited to 63. If the most significant bit (63) is set after the
shift, the resulting number is negative.

In the new wide number system, the maximum shift value is not limited. Digits beyond the maximum number
width are cut off. The sign of the number will not be affected by this operation.

Example SETUP.RADIX
Hex/Decimal

SETUP.RADIX
Wide* Notes

PRINT 0x0000000000000002<<62. 8000000000000000
(8 + 15 zeros)

8000000000000000
(8 + 15 zeros)

PRINT 0x0000000000000002<<63. 0 10000000000000000
(1 + 16 zeros)

PRINT 0x0000000000000001<<63. 8000000000000000
(8 + 15 zeros)

8000000000000000
(8 + 15 zeros)

PRINT 0x0000000000000001<<64. 8000000000000000
(8 + 15 zeros)

10000000000000000
(1 + 16 zeros)

Due to the
shift
limitation in
Hex/Decimal
mode, this is
effectively a
63-bit shift.

PRINT 0x0000000000000001<<2080. 8000000000000000
(8 + 15 zeros) 0

All bits
shifted
beyond most
significant
bit and cut
off.

3. Sign-Extension of Bit Fields
Some scripts make use of the 64-bit signed integer behavior in order to sign-extend a value of a bit field. In the
new wide number system, this sign-extension “trick” is not possible, because the number sign is not affected by
shift operations.

Example: sign extend 3-bit field SETUP.RADIX Hex/Decimal SETUP.RADIX
Wide* Notes

PRINT (0x06<<61.)>>61. 0FFFFFFFFFFFFFFFE (=-2) 6 No sign extension in
Wide modes

PRINT (0x06<<2077.)>>2077. 0 6 No sign extension in
Wide modes

In order to write backwards-compatible scripts, use the functions CONVert.SignedBITS() or the function
CONVert.SignedQuad(), which are dedicated to perform sign-extensions of bit fields:

Example: sign extend 3-bit field Backwards-compatible method Notes

PRINT (0x06<<61.)>>61. PRINT
CONVert.SignedQUAD(0x06<<61.)>>61.

Function
introduced in
rev. 155331

PRINT (0x06<<61.)>>61. PRINT CONVert.SignedBITS(0x06, 3., 0.)
Function
introduced in
rev. 183018

4. Operations that Rely on 64-bit Integer Overflows
In the previous number system, all arithmetic operations perform modulo 2^64 calculation.

In the new number system, all arithmetic operations that produce results beyond the size limit are
unpredictable.

Example: sign extend 3-bit field SETUP.RADIX Hex SETUP.RADIX Wide*
PRINT 0xFFFFFFFFFFFFFFFE+0x3 1 10000000000000001
PRINT 0x7FFFFFFFFFFFFFFF*0x5 7FFFFFFFFFFFFFFB 27FFFFFFFFFFFFFFB

In order to write backwards-compatible scripts, use the function CONVert.SignedQUAD():

Example: sign extend 3-bit field Backwards-compatible method
PRINT 0xFFFFFFFFFFFFFFFE+0x3 PRINT CONVert.SignedQUAD(0xFFFFFFFFFFFFFFFE+0x3)
PRINT 0x7FFFFFFFFFFFFFFF*0x5 PRINT CONVert.SignedQUAD(0x7FFFFFFFFFFFFFFF*0x5)

5. Converting Negative Values to Unsigned Hexadecimal for Output
Some of the PowerView output commands will, by default, produce undecorated output. The commands are
PRINT, WRITE, APPEND, INTERCOM.PipeWRITE, PRinTer.PRINT and STOP. If a negative hexadecimal value is
passed to one of these commands, the command will implicitly output these values as unsigned hexadecimals.

Examples of implicit and explicit hexadecimal conversions Output
format

PRINT -0x123
implicit
unsigned
hexadecimal
output

PRINT %Hex -0x123
explicit

unsigned
hexadecimal

output

PRINT %HexS -0x123
explicit
signed
hexadecimal
output

PRINT -456.

decimal
value

without
specified
format is

not changed

PRINT %Hex -456.

explicit
unsigned
hexadecimal
output of
decimal value

In the previous system, the conversion to unsigned hexadecimal was performed as the two’s complement of a 64-
bit number.

In the new wide number system, the two’s complement is also performed, but the resulting number width is the
smallest multiple of 64, that is wide enough to hold the resulting value.

Here is a comparison of previous and new output:

Examples of implicit unsigned
hexadecimal output

SETUP.RADIX
Hex/Decimal SETUP.RADIX Wide*

PRINT -0x7 0FFFFFFFFFFFFFFF9 0FFFFFFFFFFFFFFF9
PRINT -0xFFFFFFFFFFFFFFFF 1 0FFFFFFFFFFFFFFFF0000000000000001

In order to achieve consistent output, there are several options available:

5.1. Use Format Option %DECOrated with Above Commands

Note

Please note that doing so will hexadecimal numbers with prefix “0x” and end decimal numbers with suffix “.”

Below table shows how %DECOrated changes the output, if SETUP.RADIX Wide* is used. While the examples
are made using print, the same is true for all commands mentioned above.

Command (with SETUP.RADIX Wide*) Output
PRINT 5. 5

PRINT %DECOrated 5 5
PRINT -0x7 0FFFFFFFFFFFFFFF9

PRINT %DECOrated -0x7 -0x7
Note

ECHO can be used as replacement for PRINT %DECOrated

5.2 Use Commands or Functions For Advanced Formatting

In order to achieve consistent output, scripts should make use of output commands with advanced formatting.
PowerView provides several commands that allow printf-like formatting.

Function Simple formatting Advanced formatting

Write to message window PRINT [%<format>] <value> PRINTF "<format_string>"
<values>

Write to file WRITE [%<format>] <value>
WRITEF
"<format_string>"
<values>

Print to Printer PRinTer.PRINT [%<format>] <value>
PRinTer.PRINTF
"<format_string>"
<values>

Write to Intercom Pipe INTERCOM.PipeWRITE [%<format>] <value>
INTERCOM.PipeWRITEF

"<format_string>"
<values>

Append to file Append to file Not available, use STOP
%DECOrated

Stop Script Execution with message STOP [%<format>] <value> Not available, use STOP
%DECOrated

Write to Macro -
SPRINTF <macro>
"<format_string>"
<values>

5.3 Use Commands with Advanced Formatting with Advanced Number Width, or
FORMAT.HEX()

Use commands with advanced formatting for standard number widths (8, 16, 32, 64 bit), or the FORMAT.HEX()
function for arbitrary lengths:

Function Command

Print Hex value as unsigned 32-bit hex
PRINTF
“0x%016lx”
-0x123

Print Hex value as unsigned 64-bit hex
PRINTF
“0x%016llx”
-0x123

Format Hex value as unsigned hex with 37. digits
PRINT
FORMAT.HEX(37.,
-0x123)

Strict Radix Identifier Requirement
Overview and Time Plan
In order align to PowerView’s numeric constants with modern programming languages like C or Python, the
default radix for numeric constants without an explicit radix identifier will be changed in three phases, as
detailed in the table below. The change will be performed in parallel to the introduction of the wide number
system.

The change will be performed in three phases, accompanied by changing the SETUP.RADIX defaults:

Phase SETUP.RADIX default Behavioral changes Change
due to

1 Hex -> WideStrictWarn Explicit radix identifier required in command line. A warning is printed
during script execution. 2026/02

2 WideStrictWarn -> WideStrict PowerView throws error for numerical constants without explicit radix
identifier 2026/09

3 WideStrict -> WideDecimal Numerical constants without explicit radix identifier are interpreted as
decimal value

to be
defined

The Changes in Detail
In the previous number system, which defaults to SETUP.RADIX Hex, numerical constants without radix are, by
default, interpreted as hexadecimal values. PowerView also supports setting the radix to Decimal. Numbers are
interpreted according to below table:

Radix Identifier Example(s) SETUP.RADIX Hex (default) SETUP.RADIX Decimal
0x<digits> 0x1200 Hexadecimal Hexadecimal
<digits>. 123456. Decimal Decimal
<digits>.<digits>
<digits>.<digits>E<digits>

37.7
37.7E7 Floating Point Floating Point

no identifier, only numbers 42,
678 Hexadecimal Decimal

no identifier, numbers + ‘a’…‘f’ 4B
0a5 Hexadecimal ERROR

With the introduction of the new wide number system, we will switch the SETUP.RADIX default from Hex to
WideStrictWarn or WideStrict. This requires all hexadecimal numbers to start with “0x” and all decimal
numbers to end with a “.”. This intermediate step ensures that all numbers used in scripts have radix identifiers
and can be interpreted correctly, independent of the SETUP.RADIX setting.

In the new wide number system, numerical constants are interpreted according to below table:

Radix Identifier Example(s) SETUP.RADIX WideStrict /
WideStrictWarn

SETUP.RADIX
WideDecimal

SETUP.RADIX
WideHex

0x<digits> 0x1200 Hexadecimal Hexadecimal Hexadecimal
<digits>. 123456. Decimal Decimal Decimal
<digits>.<digits>
<digits>.<digits>E<digits>

37.7
37.7E7 Floating Point Floating Point Floating Point

no identifier, only numbers 42
678 ERROR / Warning Decimal Hexadecimal

no identifier, numbers + ‘a’…‘f’ 4B
0a5 ERROR / Warning ERROR Hexadecimal

Action Required
We strongly recommend checking your scripts regarding compatibility with the new radix default. As the
command SETUP.RADIX WideStrict was already introduced in PowerView build 159006 (April 26, 2023), you
have the chance to test and update your scripts before the default setting changes.

Currently used Radix setting What you can do

None / Default setting SETUP.RADIX Hex

Test your scripts by temporarily setting SETUP.RADIX
WideStrict. As numeric constants without radix
identifier will then cause an error, it is easy to spot
those constants. For scripts, you may also use the
SETUP.RADIX WideStrictWarn setting - which just
causes warnings during script execution. Make the
numerical constants compatible by adding the prefix
0x

SETUP.RADIX Decimal
Change SETUP.RADIX Decimal to SETUP.RADIX
WideDecimal to benefit from the wide number
support.

