
Knowledgebase > TRACE32 PowerView > Measuring function run-times with BenchMark
Counters (BMC).

Measuring function run-times with BenchMark Counters
(BMC).
2025-03-06 - Comments (0) - TRACE32 PowerView

BenchMark Counters (performance monitors) can be used to measure function run-times.
This is especially useful if no trace is available.

The BenchMark Counters allow measuring executed clock cycles. The run-times can then be
calculated if the processor clock is known.

The measurement can be performed without stopping the program execution, if the target
architecture supports the BMC ATOB-mode. Otherwise, the execution has to be stopped to
start/stop the counter. Search for the command BMC.<counter>.ATOB in your Processor
Architecture Manual, to check if your target architecture supports the ATOB mode. The BMC
ATOB-mode is not supported by Arm processors.

1. Measuring function run-times with
BMC ATOB-Mode
If the target architecture supports the ATOB mode, then the measurements can be
performed without stopping the program execution. This mode enables event triggered
counter start/stop.

1.1. Setting Alpha and Beta Breakpoints
The events are defined using Alpha and Beta breakpoints set with the command
Break.Set or Break.SetFunc. Refer to General Commands Reference Guide B for more
information about these commands.

Every time the Alpha condition triggers, the counter is started. The counter stops when the
Beta breakpoint condition is triggered.

Examples:

Set Alpha and Beta breakpoints at the entry and exit of func2 using Break.SetFunc:1.

Break.SetFunc func2

Set Alpha and Beta breakpoints at the entry and exit of func2 using Break.Set:1.

Break.Set func2 /Alpha
Break.Set sYmbol.EXIT(func2) /Beta

https://support.lauterbach.com/
https://support.lauterbach.com/kb
https://support.lauterbach.com/kb/trace32-powerview
https://support.lauterbach.com/kb/articles/measuring-function-run-times-with-benchmark-counters-bmc
https://support.lauterbach.com/kb/articles/measuring-function-run-times-with-benchmark-counters-bmc
https://support.lauterbach.com/kb/trace32-powerview
https://www.lauterbach.com/pdf/directory.pdf#M8.newlink.DIR213
https://www.lauterbach.com/pdf/directory.pdf#M8.newlink.DIR213
https://www.lauterbach.com/pdf/general_ref_b.pdf


Both examples will set the following breakpoints:

Note

The Break.SetFunc command as well as the sYmbol.EXIT() PRACTICE function requires
that the function exit is known is unique. If the function has no clear exit point (e.g. because
of compiler optimization) or has multiple exit points, then the Beta breakpoints need to be
set manually.

The time include in the case between the Alpha and Beta events, i.e. it includes sub-
function calls and interrupts. If you are interested in the run-time of the function code only,
then you can use the following breakpoints:

Var.Break.Set sieve /Alpha
Var.Break.Set sieve /Beta /Exclude

Note

Var.Break.Set sets the breakpoint on the whole function range.

The breakpoint with the /EXCLUDE option corresponds to the following breakpoints:

Break.Set 0--<funcstart>-1 /Beta
Break.Set <funcend>--0xFFFFFFFF /Beta

1.2. Enabling the BMC counters
The required settings depend on the target processor. Please refer to the description of the
BMC command group in your Processor Architecture Manual and to the examples below for
more information.

1.3. Examples
1.3.1. RH850
The ATOB mode allows to measure the total, minimal and maximal run-times as well as the
number of function calls based on the BCNT0..BCNT3 counters:

https://www.lauterbach.com/pdf/directory.pdf#M8.newlink.DIR213


Additionally, Alpha and Beta breakpoints needs to be set at entry and exit of the selected
function. RH850 supports 1 Alpha and 7 Beta breakpoints. Multiple Beta breakpoint are
useful in case of multiple function exit points.

The clock needs additionally to be set using the command BMC.CLOCK.

Below is an example script to measure the run-time of the function sieve:

BMC.CLOCK 120MHZ ; core clock frequency, e.g. 120 MHz

BMC.BCNT0.EVENT.CLOCKS ; AtoB TotalTime
BMC.BCNT0.ATOB.TOTAL
BMC.BCNT0.RATIO.runtime(X/CLOCK)

BMC.BCNT1.EVENT.CLOCKS ; AtoB MinTime
BMC.BCNT1.ATOB.MIN
BMC.BCNT1.RATIO.runtime(X/CLOCK)

BMC.BCNT2.EVENT.CLOCKS ; AtoB MaxTime
BMC.BCNT2.ATOB.MAX
BMC.BCNT2.RATIO.runtime(X/CLOCK)

BMC.BCNT3.EVENT.ATOB ; AtoB Events
BMC.BCNT3.ATOB.TOTAL
BMC.BCNT3.RATIO.OFF

Break.Delete
;set up counter start / stop events
Break.SetFunc sieve

;run measurement (for 10 seconds)
BMC.Init

Go
Wait 10s



Break

Please refer for more information to the description of the BMC.<counter>.ATOB command
in the RH850 Debugger and Trace manual as well as to the Application Note Benchmark
Counter RH850.

1.3.2. TriCore
The ICNT counter can be used to measure the run-time. The clock can automatically be
detected using the CLOCK.ON command. BMC.OTGSC0.EVENT Alpha can additionally be
used to count the number of function calls (Alpha events).

Additionally, Alpha and Beta breakpoints needs to be set at entry and exit of the selected
function.

This allows to measure the total and average run-time. The TriCore BenchMark Counters do
not support getting the minimum and maximum run-times.

Below is an example script to measure the run-time of the function sieve:

CLOCK.ON

BMC.ICNT.EVENT ON
BMC.ICNT.ATOB ON

Break.Delete
;set up counter start / stop events
Break.SetFunc sieve

;To count the number of function calls (Alpha events)
BMC.OTGSC0.EVENT Alpha
;set the ratio to TIME/X (The ratio value will indicate the
function's execution time)
BMC.OTGSC0.RATIO TIME/X

;run measurement (for 10 seconds)
BMC.Init

https://www.lauterbach.com/pdf/debugger_rh850.pdf
https://www.lauterbach.com/pdf/app_rh850_bmc.pdf
https://www.lauterbach.com/pdf/app_rh850_bmc.pdf


Go
Wait 10s
Break

Refer also to the demo scripts in the TRACE32 installation under demo/tricore/etc/bmc

2. Measuring function run-times without
BMC ATOB-Mode
Some processor architectures do not support BMC ATOB-mode (e.g. Arm). In this case the
program execution needs to be stopped at the function entry and exit. Example:

Go <function_entry>
<set up counter>
Go <function_exit>
<check counter results>

RunTime.Mode BMC
For Arm, TriCore and Xtensa, the procedure described above can be automated using the
RunTime command group and SPOT breakpoints.

Note
SPOT breakpoints allow stopping the program execution shortly to update the TRACE32
screen when the breakpoint is hit. As soon as the screen is updated, the program execution
continues.

Using the RunTime.Mode BMC requires TRACE32 Release R.02.2024 or newer.

Example:

; Set SPOT breakpoint at the entry of all functions starting with
func*
sYmbol.ForEach "Break.SetFunc * /SPOT" func*

; Set the BMC clock, e.g. here 600Mhz
BMC.CLOCK 600Mhz

; Set the RunTime mode to BMC
RunTime.Mode BMC

; Prepare RunTime recording
RunTime.OFF

; Run the program execution, e.g. for three seconds
Go
WAIT 3.s
Break



The results can then be displayed with the RunTime.STATistic command group, e.g.
RunTime.STATistic.Func


