
Knowledgebase > FAQs by core architecture > RISC-V > [RISC-V] [HW-Designer]
Instruction/data cache handling in TRACE32

[RISC-V] [HW-Designer] Instruction/data cache handling in
TRACE32
2023-05-09 - Comments (0) - RISC-V

Instruction- and Data-Caches in RISC-V
Unfortunately, the RISC-V debug specification does not define an explicit, standardized way
to handle instruction- or data caches. Nevertheless, in some scenarios a debugger and/or
the debug IP need to be able to trigger certain cache operations, such as cache flushes.

Example #1:

Let's assume an SoC with a single RISC-V core with instruction cache. The core's instruction
memory contains a RISC-V instruction 'A'. The RISC-V core gets halted some instructions
before the execution of 'A'. The core has not executed 'A' yet, however it has already
loaded 'A' into its instruction cache, and into its instruction pipeline. Now the debugger sets
a software breakpoint onto 'A', which means it (temporarily) replaces 'A' with an 'EBREAK'
instruction. After that, the debugger lets the core resume again. In order to achieve that the
core will execute the new 'EBREAK' instruction instead of the originally cached 'A'
instruction, the debugger needs to flush the core's instruction cache and instruction pipeline
before letting the CPU resume.

Example #2:

Let's assume an SoC with multiple RISC-V cores with data caches. Each core is halted. Each
core has already cached the memory data 'X' of an address 'B' in their respective data
cache. Now, the debugger uses the direct system bus access to write new data 'Y' into the
data memory at address 'B'. When the debugger resumes the cores now, it needs to make
sure that each core's data cache does not contain a the old/outdated data 'X' any more.
That is why the debugger needs to flush each core's data cache before letting the cores
resume, or before reading any memory content from the perspective of one of the cores.

Cache Handling via FENCE/FENCE.I
In order to solve the above example scenarios and other scenarios, the debugger uses the
program buffer execution of the 'FENCE' and/or 'FENCE.I' instructions. According to the
RISC-V ISA specification, these instructions must ensure that a cache and/or pipeline flush
(or an equivalent chip-specific operation) will happen, if applicable to the respective chip
and if needed in the respective scenario.

The following points show example scenarios in which the debugger usually uses the FENCE

https://support.lauterbach.com/
https://support.lauterbach.com/kb
https://support.lauterbach.com/kb/faqs-by-core-architecture
https://support.lauterbach.com/kb/risc-v
https://support.lauterbach.com/kb/articles/risc-v-hw-designer-instruction-data-cache-handling-in-trace32
https://support.lauterbach.com/kb/articles/risc-v-hw-designer-instruction-data-cache-handling-in-trace32
https://support.lauterbach.com/kb/risc-v


and FENCE.I instructions. Of course, the described behavior may not always be applicable,
and may also change in future debugger versions.

Resume core: Before the debugger lets a core resume, it will execute both a
'FENCE' and 'FENCE.I' instruction via program buffer.

Read memory via core: Before the debugger reads memory from perspective of a
core (via program buffer or 'access memory' abstract command), it will execute a
'FENCE' instruction via program buffer.

Write memory via core: After the debugger has written memory from perspective
of a core (via program buffer or 'access memory' abstract command), it will execute
a 'FENCE' instruction via program buffer.

The above actions by the debugger are only possible if the hardware's debug IP does have a
program buffer with sufficient size, and if the FENCE and FENCE.I instructions are supported
by the respective core. In that case, the debugger will execute the described steps
independent of whether the respective core does have any caches or not.

If the hardware's debug IP does however NOT have any program buffer, a program buffer of
insufficient size, or if FENCE/FENCE.I are not supported, then the debugger must assume
that the debug IP will automatically handle all respective scenarios itself.

Cache Handling via the “Base Cache
Management Operation” (CMO) ISA
extension
The optional “Base Cache Management Operation” (CMO) ISA extensions (Zicbom, Zicboz,
Zicbop) define standardized mechanisms to operate on caches of a RISC-V core. Information
about this ISA extension can for example be found here: https://github.com/riscv/riscv-CMOs

As of today, the Lauterbach RISC-V debugger’s disassembler does support this extension.
However, the debugger does not use the instructions of this extension to execute cache
flushes (to cover the scenarios mentioned above) just yet. However, we are considering to
do so in the future. If you have a core that supports this extension and want the debugger
to perform cache flushes with it, please contact support@lauterbach.com

Tags
Hardware Designer
RISC-V

https://github.com/riscv/riscv-CMOs
https://support.lauterbach.com/search/labels/all/Hardware%20Designer
https://support.lauterbach.com/search/labels/all/RISC-V

