LAUTERBACH

Knowledgebase > Tracing > What is the difference between "Trace Enable” and "TraceOn/TraceOff ?

What is the difference between Trace Enable” and
"TraceOn/TraceOff " ?

2025-02-25 - Comments (0) - Tracing

In short: TraceEnable defines what trace data is generated, while TraceON/TraceOFF controls when the
generation of trace data starts and stops.

If you only need a quick answer, you can stop reading here. But if you want a more detailed explanation, let's
dive deeper.

Understanding Trace Filtering

In many cases, generating trace data for the entire program and data flow is unnecessary. Instead, you may
want to focus on specific instructions, data accesses, or a short program section. This is where trace
filters—TraceEnable, TraceON, and TraceOFF—come into play. These filters configure the available
comparators in the core trace logic so that trace data is only generated for the events of interest. The number of
filters you can use and the level of detail in the trace data depend on the number of comparators and the trace
protocol used.

How TraceEnable Works

The command Break.Set <program_event> /TraceEnable configures the comparators to generate trace
data only for the specified event. In this case, general settings for program and data flow visibility are ignored.

Examples:

Generates trace data when a write access to the variable 'flags[3]' occurs:
Var.Break.Set flags[3] /Write /TraceEnable

Generates trace data when the 'sieve ' function is entered:

Break.Set sieve /Program /TraceEnable

When displaying trace data, TRACE32 always uses the TRACE ENABLE keyword when the specified event
occurred:

https://support.lauterbach.com/
https://support.lauterbach.com/kb
https://support.lauterbach.com/kb/tracing-2
https://support.lauterbach.com/kb/articles/what-is-the-difference-between-trace-enable-and-traceontraceoff
https://support.lauterbach.com/kb/tracing-2

% BuTrace.list EI@E

&Setup... Config... i Goto... FiFind... v Chart & Profile EMIPS % More I less
record run address cycle data symbol ti.back]
+0000058097 D:08002A0C wr-Tong 00000068 .._v/r_Tle\Global__bss_end+0x110 824.435us ~
+0000058099 D:08002410 wr-long 08002A50 .._v7r_le\Global__bss_end+0x114 <0.005us =
—— TRACE ENABLE
40000058110 R:08001B48 ptrace .eve_ram_arm_v7r_le\sieve\sieve 0.500us ¥
~
#define sSIZE 18
char flags[SIzZE+1];
static int sieve(void) /* sieve of erathostenes */
737 {
push {r4-r6,r1l}
+0000058111 D:08002A04 wr-long 08002508 .._v7r_le\Global__bss_end+0x108 <0.005us
+0000058122 D:08002408 wr-long 00000000 .._v7r_le\Global__bss_end+0x10C 1.000us
+0000058123 D:08002A0C wr-long 00000068 .._v7r_le\Global__bss_end+0x110 <0.005us
+0000058125 D:08002A10 wr-Tong 08002A50 .._v7r_le\Global__bss_end+0x114 <0.005us
—— TRACE ENABLE
40000058137 R:08001B48 ptrace .eve_ram_arm_v7r_le\sieve\sieve 824.935us
#define sIzZE 18
char flags[sIzE+1];
static int sieve(void) /* sieve of erathostenes */
737 {
push {r4-r6,r1l}
40000058138 D:08002404 wr-long 08002508 .._v7r_le\Global__bss_end+0x108 <0.005us
40000058149 D:08002A08 wr-long 00000000 .._v7r_le\Global__bss_end+0x10C 0.500us
+0000058150 D:08002A0C wr-long 00000068 .._v7r_le\Global__bss_end+0x110 <0.005us
+0000058152 D:08002A10 wr-long 08002A50 .._v7r_le\Global__bss_end+0x114 <0.005us v

How TraceON and TraceOFF Work

The command Break.Set <start event> /TraceON configures the comparators to start generating trace
data when <start_event> occurs. Similarly, the command Break.Set <stop event> /TraceOFF stops
trace data generation when <stop event> occurs.

Example:

Start generating trace data when line 16 of the 'func2' function is executed and stop generating it when the
'sieve' function exits:

Break.Set func2\16 /Program /TraceON
Break.Set sYmbol.EXIT(sieve) /Program /TraceOFF

The TRACE ENABLE keyword marks where trace data generation stopped before restarting:

-

i1 BuTrace.List EI
&Setup... & Config... R Goto... #1Find... ¢ Chart H Profile B MIPS % More X Less
record run address cycle data symbol ti.back =
cmp r4,#0x12 A
+0000000843 R:08001BE4 p;trace .am_arm_v7r_le\sieve\sieve+0Ox9C <0.005us i
} A
757 return count;
1dr r3,[rll,#-0x10]
758 }
cpy ri;r3
sub rl3,rll,#0x0C
pop {r4-r6,r1l}
—— TRACE ENABLE -
+0000000851 R:080002¢C8 ptrace ~am_arm_v7r_le\sieve\func2+0x78 9.000us
170 fstatic += mstaticl;
movw r3,#0x1F60
movt r3,#0x800
1dr r2,[r3]
movw r3,#0x1F90
movt r3,#0x800
1dr r3,[r3]
add r2,r2,r3
movw r3,#0x1F60
movt r3,#0x800 v

Note

If TraceON <start event> occurs after TraceOFF <stop event> has taken effect, the generation of trace
data is restarted.

Controlling What Type of Trace Data is Generated

Now that we've discussed when tracing starts and stops, let’s look at what kind of trace data is generated. For
most core architectures, the default trace generates program flow trace data. However, additional details (e.g.,
data accesses) can be explicitly enabled. For the Cortex-R5 for example, in addition to program flow, you can
also generate trace data for write accesses.

ETM.DataTrace Write
Break.Set func2\16 /Program /TraceON
Break.Set sYmbol.EXIT(sieve) /Program /TraceOFF

Combining TraceEnable with TraceON/TraceOFF

Finally, let’s look at a case where TraceEnable is combined with TraceON and TraceOFF—again for the
Cortex-R5.

ETM.DataTracePrestore ON

Break.Set func2\16 /Program /TraceON

Break.Set sYmbol.EXIT(sieve) /Program /TraceOFF
Var.Break.Set flags /Write /TraceEnable

This configuration ensures that trace data for write accesses (i.e., what) to the variable 'flags' is generated, but
only between the program points (i.e., when) at line 16 of 'func2' and the exit of 'sieve'.

