
Knowledgebase > Tracing > What is the difference between ´Trace Enable´ and
´TraceOn/TraceOff´?

What is the difference between ´Trace Enable´ and
´TraceOn/TraceOff´?
2025-02-25 - Comments (0) - Tracing

In short: TraceEnable defines what trace data is generated, while TraceON/TraceOFF
controls when the generation of trace data starts and stops.

If you only need a quick answer, you can stop reading here. But if you want a more detailed
explanation, let's dive deeper.

Understanding Trace Filtering
In many cases, generating trace data for the entire program and data flow is unnecessary.
Instead, you may want to focus on specific instructions, data accesses, or a short program
section. This is where trace filters—TraceEnable, TraceON, and TraceOFF—come into
play. These filters configure the available comparators in the core trace logic so that trace
data is only generated for the events of interest. The number of filters you can use and the
level of detail in the trace data depend on the number of comparators and the trace
protocol used.

How TraceEnable Works
The command Break.Set <program_event> /TraceEnable configures the
comparators to generate trace data only for the specified event. In this case, general
settings for program and data flow visibility are ignored.

Examples:

Generates trace data when a write access to the variable 'flags[3]' occurs:

Var.Break.Set flags[3] /Write /TraceEnable

Generates trace data when the 'sieve ' function is entered:

Break.Set sieve /Program /TraceEnable

When displaying trace data, TRACE32 always uses the TRACE ENABLE keyword when the
specified event occurred:

https://support.lauterbach.com/
https://support.lauterbach.com/kb
https://support.lauterbach.com/kb/tracing-2
https://support.lauterbach.com/kb/articles/what-is-the-difference-between-trace-enable-and-traceontraceoff
https://support.lauterbach.com/kb/articles/what-is-the-difference-between-trace-enable-and-traceontraceoff
https://support.lauterbach.com/kb/tracing-2


How TraceON and TraceOFF Work
The command Break.Set <start_event> /TraceON configures the comparators to
start generating trace data when <start_event> occurs. Similarly, the command
Break.Set <stop_event> /TraceOFF stops trace data generation when
<stop_event> occurs.

Example:

Start generating trace data when line 16 of the 'func2' function is executed and stop
generating it when the 'sieve' function exits:

Break.Set func2\16 /Program /TraceON
Break.Set sYmbol.EXIT(sieve) /Program /TraceOFF

The TRACE ENABLE keyword marks where trace data generation stopped before restarting:



Note
If TraceON <start_event> occurs after TraceOFF <stop_event> has taken effect, the
generation of trace data is restarted.

Controlling What Type of Trace Data is Generated
Now that we’ve discussed when tracing starts and stops, let’s look at what kind of trace
data is generated. For most core architectures, the default trace generates program flow
trace data. However, additional details (e.g., data accesses) can be explicitly enabled. For
the Cortex-R5 for example, in addition to program flow, you can also generate trace data for
write accesses.

ETM.DataTrace Write
Break.Set func2\16 /Program /TraceON
Break.Set sYmbol.EXIT(sieve) /Program /TraceOFF

Combining TraceEnable with TraceON/TraceOFF
Finally, let’s look at a case where TraceEnable is combined with TraceON and
TraceOFF—again for the Cortex-R5.

ETM.DataTracePrestore ON
Break.Set func2\16 /Program /TraceON
Break.Set sYmbol.EXIT(sieve) /Program /TraceOFF
Var.Break.Set flags /Write /TraceEnable

This configuration ensures that trace data for write accesses (i.e., what) to the variable
'flags' is generated, but only between the program points (i.e., when) at line 16 of 'func2'
and the exit of 'sieve'.


