
Tips & Tricks > Debug > Case Study: Debugging Traps on TriCore™ AURIX™

Case Study: Debugging Traps on TriCore™

AURIX™

2025-09-15 - Comments (0) - Debug

Background Information: Traps in TriCore™
AURIX™
Traps in the TriCore™ AURIX™ architecture are exceptional events that can be caused by conditions such as:

Instruction Exception

Illegal Memory accesses, e.g.:

Result from attempts to access non mapped memory regions or peripherals not yet initialized

Bus transactions that lead to ECC faults

Non-Maskable Interrupt (NMI)

Traps are always active; they cannot be masked or disabled by software. The trap vector handler is stored in
code memory, and the BTV (Base Trap Vector) register specifies the base address of the trap vector table. The
contents of this register can be inspected in the Register.view window.

The TriCore architecture defines eight general trap classes, each with its own dedicated handler. The trap
class determines the offset of the corresponding trap handler in program memory, relative to the base address
specified in the BTV register.

https://support.lauterbach.com/
https://support.lauterbach.com/news
https://support.lauterbach.com/news/debug
https://support.lauterbach.com/news/posts/case-study-debugging-traps-on-tricore-aurix
https://support.lauterbach.com/news/debug


Each trap is assigned a unique Trap Identification Number (TIN). When a trap occurs, the TIN is
automatically stored in register D15, allowing the Trap Service Routine (TSR) to identify the trap and take
appropriate action in the application software.

Trap Types:



Source Classification:

Hardware traps: Generated in response to exception conditions detected by the hardware (e.g.,
illegal instruction or memory protection traps).

Software traps: Intentionally generated by executing a system call or an assertion instruction.

Timing Classification:

Synchronous traps: Occur during the execution (or attempted execution) of a specific
instruction. The causing instruction is known precisely, and the trap is serviced immediately
before execution continues.

Asynchronous traps: Triggered by hardware conditions detected externally and signaled back
to the core. The exact instruction that caused the condition may not be identifiable since the
CPU stops at a random location and the displayed instruction is thus not related to the trap.

For more information, refer to the Core Architecture Manual.

Case Study - Trap Debugging
In this case study, we demonstrate how to debug a trap using TRACE32 PowerView on a TriBoard equipped
with a TC397XE.

Initial Observations
We start with a trap condition where the symbolic information shows that the application is stopped at a Bus
Error Trap.

The TRACE32 PowerView status bar indicates that the target is “stopped at a software breakpoint.” The List
window confirms that the program counter points to an instruction immediately after debug16.

Note

Debug instructions are typically inserted into error-handling routines. When a debugger is connected, they halt
the core for inspection. Without a debugger, they behave as NOP instructions.



Examining the Frame.view window reveals an exception followed by a call to a trap-handling function.

Using TRACE32 Trap Decoding
TRACE32 PowerView provides a menu for identifying the reason for a trap:
TC39x > Special decoders > active trap decoding.

If the core is halted inside the Trap Service Routine (not at the trap vector itself), the AREA window may display
“No exception detected.” This is expected because the core has already moved past the trap vector.

To decode the trap reason, the target must be halted at the trap vector itself. TRACE32 PowerView provides a
menu for setting a program breakpoint across the trap vector range:

TC39x > Special triggers > break on trap entry (whole table).

Care must be taken, as compilers may insert regular application code (e.g., the encode function) into unused
bytes of the trap vector.



In this example, the program breakpoint must be adapted accordingly:
Break.Set IfxCpu_Trap_vectorTable0++0xF3 /Program /Onchip

When the core is halted correctly within the trap vector range, the “active trap decoding” menu will show
details such as the trap class, TIN, and other trap-specific information.

Accessing Additional Trap Details
While the Core Architecture Manual describes general trap mechanisms, implementation details are
documented in the Family User’s Manual. For example TC3xx User’s Manual, states that more detailed
information about DIE traps are to be extracted from the DIEAR (Data Integrity Error Address Register) and
DIETR (Data Integrity Error Trap Register).

Using the peripheral view we can get more insights about the error e.g. the address of the memory access
causing the trap!



Using the Peripheral view in TRACE32, we can observe:

DIETR : CPUx Data Integrity Error Trap Register

IED: Data integrity error condition detected

IE_S: Integrity Error - Scratchpad Memory

Dual Bit Error Detected

DIEAR: Data Integrity Error Address Register

The access triggering the trap is actually 0x7000001C

For synchronous traps, the Stack Frame window can also provide valuable insights such as the exact
instruction that triggered the trap.
However, since a DIE trap is asynchronous, the direct link to the instruction that triggered it is lost. The trap
may occur several instructions after the offending instruction executed. Using Frame.Up in such cases may lead
to misleading conclusions.

In the following screenshot, the stack unwinding shows that the DIE trap occurred while the CPU was trying to
read from the address 0x70000020. The Data Integrity Error Address Register indicates that the error was
triggered by a prior read access to a different address (0x7000001C).



Using Trace
Another powerful debugging technique is to use MCDS trace.

Since this trap was caused by a memory access, tracing both program flow and data accesses gives a clearer
picture.

In the Trace.List window, a trap marker appears shortly after a byte write access to the DSPR (Data Scratch-
Pad RAM) of TriCore0.

Root Cause & Solution
The DSPR (Data Scratchpad RAM) is ECC protected and must be initialized before any read operation.
Initialization can be performed either by software, or automatically by hardware (via UCB_DFLASH.PROCONRAM).



For half-word or larger write operations, ECC bits are pre-calculated and written alongside the data.
However, for byte write operations, the transaction is internally transformed into a half-word
read–modify–write sequence in the DMI module. This caused the detection of uncorrectable memory integrity
errors.

Solution:
The issue is resolved by enabling RAM initialization through the Startup Software (SSW – the boot ROM) in
UCB_DFLASH.

Note

If you are interested in the demo files used in this case study, please contact Lauterbach Support.

https://support.lauterbach.com/new-ticket

