
Tips & Tricks > Trace > SMP Trace Display Options

SMP Trace Display Options

2025-10-15 - Comments (0) - Trace

TRACE32 PowerView provides different display options for analyzing trace
results on Symmetric Multi-Processing (SMP) systems. The most suitable
option depends on the target software and the user’s analysis goals.

The default display option is MergeCORE, where timing is calculated
separately for each core, but the results are presented as a combined
summary across all cores.

To illustrate this, consider a Linux system running on a target with four
cores. For demonstration purposes, we created an artificial example where
a task is forced to switch execution in a loop from one core to the next.
This setup makes the behavior clearly visible without depending on
naturally occurring core switches.

In this scenario, the timing diagram of the task run-times is displayed in
the default MergeCORE view, where the execution times are aggregated
across all cores:

The corresponding numerical view is shown below. It indicates that the
task thread_itercore executed for 1.758 seconds, which corresponds to
15.894% of the total system run-time. This percentage reflects the share of
overall CPU time consumed by the task.

An alternative display mode is SplitCORE, where timing is calculated and
displayed separately for each core.

You can switch to this mode by selecting the “Split cores” button in the

https://support.lauterbach.com/
https://support.lauterbach.com/news
https://support.lauterbach.com/news/trace
https://support.lauterbach.com/news/posts/smp-trace-display-options
https://support.lauterbach.com/news/trace


trace display window.

The display mode can also be selected using the /SplitCORE option, which
is supported by all trace display commands:
Trace.Chart.TASK /SplitCORE

Switching to the SplitCORE view in the previous example produces the
following results:

In this view, the run-time of the task thread_itercore is displayed
separately for each core. The total run-time of 1.758 seconds corresponds
to the sum of the task’s execution times across all four cores.

Function run-times can be analyzed in the same way as task run-times,
using either display mode. For example, the run-time of the sieve function
within the thread_itercore task is shown below in both
the MergeCORE and SplitCORE views, illustrating how the execution
time is aggregated across all cores or displayed separately for each core:



For dynamic SMP systems such as Linux, where tasks and functions may
be executed across multiple cores, the default MergeCORE view is
generally more suitable. It allows the user to focus on the total execution
time of a task or function, independent of the kernel’s core scheduling
decisions.

In contrast, the SplitCORE view is useful when execution is strictly bound
to specific cores, as is often the case in AUTOSAR Classic Platform
systems. This mode enables detailed analysis of per-core behavior and load
distribution.

The following screenshot shows an example of an AUTOSAR Classic
Platform system running on 4 cores. It clearly illustrates for instance that
the task Task_Core2_1ms is running on core 2 with its corresponding
runtimes.

The default MergeCORE view shows in this case the same run-time
results, however without the core information:

Note

It is also possible to display the trace results for each core in one separate



window using the /CORE < number > option, e.g.:
Trace.STATtistic.TASK /CORE 2

A third display option, which can be useful in specific scenarios,
is JoinCORE. When this option is enabled, the analysis treats all cores as a
single unified entity, effectively ignoring the core information.

This option is particularly valuable when you want to measure the timing
of individual events that can occur on different cores.

In the following example, we perform a distribution analysis on a global
variable named processing_level, which represents the state of a state
machine. This variable is written by all three cores and can take the values
0, 1, or 2.

The SplitCORE display shows the values written by each core separately,
as illustrated in the screenshot below:

The MergeCORE option, on the other hand, merges the data from all
three cores into a single timeline but does not provide a true system-level
view.

By contrast, JoinCORE provides the desired view for this use case. It
allows you to observe the variable values independently of which core



performed the write access. In this example, the result clearly shows for
instance that the transitions consistently follow the sequence 0 → 1 → 2.

Note

Keep in mind that JoinCORE is not suitable for measuring runtimes that
can overlap across multiple cores.

For more information about the various trace display commands and
options, refer to General Commands Reference Guide T

https://repo.lauterbach.com/pdf/general_ref_t.pdf

