
Tips & Tricks > Trace > Utilizing TRACE32 Mixed-Signal Probe to Trace Task Switches in
Real-Time Operating Systems (RTOS)

Utilizing TRACE32 Mixed-Signal Probe to Trace Task

Switches in Real-Time Operating Systems (RTOS)

2024-12-13 - Comments (0) - Trace

Today, nearly every application runs on an operating system. To effectively analyze the
timing behavior of the OS, it is crucial to trace the currently running task. Unfortunately, the
tracing infrastructure of the core architecture sometimes lacks both data tracing and
context ID tracing. In other cases, the available on-chip trace is so small that a thorough
analysis of timing behavior is not possible.

For use cases like these, where long-term task runtime analysis is required, you can
leverage GPIO signals available on the target board along with a TRACE32 Mixed-Signal
Probe. For example, a solution has been developed for the PolarFire SoC (RISC-V, 64-bit)
running FreeRTOS on a single U54 hart. While the PolarFire SoC offers on-chip and off-chip
program flow trace, it provides neither data trace nor context ID tracing. FPGA-based SoCs
typically have many GPIOs, which makes implementing such a solution easier.

 The basic idea is to associate certain GPIO switches with the task switch operations of an
RTOS. In this case, the FreeRTOS task switch hook function is utilized to add code that
writes the task number to specific GPIOs.

https://support.lauterbach.com/
https://support.lauterbach.com/news
https://support.lauterbach.com/news/trace
https://support.lauterbach.com/news/posts/utilizing-trace32-mixed-signal-probe-to-trace-task-switches-in-real-time-operating-systems-rtos
https://support.lauterbach.com/news/posts/utilizing-trace32-mixed-signal-probe-to-trace-task-switches-in-real-time-operating-systems-rtos
https://support.lauterbach.com/news/trace


The GPIO signals can be recorded using a Lauterbach logic analyzer (Mixed-Signal Probe). A
DisConfig command in TRACE32 allows the recorded GPIO signals to be mapped to the
task number. To understand the following screenshots, it’s important to know that the
signals recorded by the Mixed-Signal Probe are displayed in TRACE32 using the TRACE32
CIProbe or IProbe main command groups. The commands IProbe.Chart.TASK
and IProbe.STATistic.TASK enable now the desired long-term task runtime analysis.

Now, for those interested in a deeper understanding of the solution, here are some
additional details.

FreeRTOS provides a "task num" for each created task. It's a progressive number starting
from 1.



The "task num" is encoded on several GPIOs during each task switch. In this
implementation, three data GPIOs are used (allowing for up to seven available tasks) along
with one clock GPIO to sample valid data on the Mixed-Signal Probe. This configuration
effectively functions like a bus trace with a single clock line.

Several CIProbe/IProbe.DisConfig.CYcle commands are configured to detect write
cycles, along with the appropriate 'Strobe', 'Address', and 'Data' fields:

The Address is the task number

The values from the GPIOs are used as the Strobe.

The Data is encoded to retrieve the original FreeRTOS task number based on the
"task num" encoded on the GPIOs.



Please note that more than one DisConfig command is required—specifically, one
command for each task. Each DisConfig command uses a distinct strobe to identify a
specific task.

The information obtained from CIProbe/IProbe.List allows the standard FreeRTOS
awareness to generate the CIProbe/IProbe.Chart.TASK view. This approach is
designed for a single-core RTOS.

Additionally, the PolarFire SoC generates a program flow trace. Since both the PowerTrace
(Analyzer), which records the program flow, and the Mixed-Signal Probe (IProbe/CIProbe),
which captures the GPIOs, tag their trace records with the same - across all TRACE32 trace
tools - timestamp, these recordings can be easily synchronized. The Analyzer.Chart
Window below shows which functions are executed when the change from task SieveDemo
to task StackEater occurred (blue cursor in both windows).




